
Lecture #10 
Context Switching &  
Performance Optimization 
Instructor:  
Dr. Ahmad El-Banna 

S
P
R

I
N

G
 2

0
1
5
 

E-626-A 
Real-Time Embedded Systems (RTES) 

Integrated Technical Education Cluster  
At AlAmeeria 

©
 A

hm
ad

 E
l-B

an
na

 



Agenda 

Introduction to Context Switching 

Software Optimization levels 

Optimization Trade-offs 

Pareto Principle 
2 

RT
ES

, L
ec

#1
0 

, S
pr

in
g 2

01
5 

©
 A

hm
ad

 E
l-B

an
na

 



Context Switch 

• A context switch (a process switch or a task switch) is the 
switching of the central processing unit, CPU, from one 
process or thread to another. 

 

• A process (a task) is an executing (i.e., running) instance of a 
program.  

 

• In Linux, threads are lightweight processes that can run in 
parallel and share an address space (i.e., a range of memory 
locations) and other resources with their parent processes 
(i.e., the processes that created them). 

3 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Task Parameters and States 

4 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 

mk:@MSITStore:E:/FES/Courses/BaiscRef/Hardware - CMP Books - Real-Time Concepts For Embedded Systems.chm::/5107final/images/0501_0.jpg
mk:@MSITStore:E:/FES/Courses/BaiscRef/Hardware - CMP Books - Real-Time Concepts For Embedded Systems.chm::/5107final/images/0502_0.jpg


Context Switching 

• A context is the contents of a CPU's registers and program 
counter at any point in time. 

• Context switching can be described in slightly more detail as 
the kernel (i.e., the core of the operating system) performing 
the following activities with regard to processes (including 
threads) on the CPU:  

• (1) suspending the progression of one process and storing the 
CPU's state (i.e., the context) for that process somewhere in 
memory,  

• (2) retrieving the context of the next process from memory and 
restoring it in the CPU's registers and  

• (3) returning to the location indicated by the program counter 
(i.e., returning to the line of code at which the process was 
interrupted) in order to resume the process. 

5 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Cost of Context Switching 

• Context switching is generally computationally intensive.  

• That is, it requires considerable processor time, which can be 
on the order of nanoseconds for each of the tens or hundreds 
of switches per second.  

• Thus, context switching represents a substantial cost to the 
system in terms of CPU time and can, in fact, be the most 
costly operation on an operating system. 

• Consequently, a major focus in the design of operating 
systems has been to avoid unnecessary context switching to 
the extent possible.  

• However, this has not been easy to accomplish in practice. 

 6 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



PERFORMANCE OPTIMIZATION 7 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Program Optimization 

• Program optimization or software optimization is the process 
of modifying a software system to make some aspect of it 
work more efficiently or use fewer resources. 

 

• In general, a computer program may be optimized so that : 

• it executes more rapidly, or  

• is capable of operating with less memory storage or other 
resources, or  

• draw less power. 

8 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Levels of optimization 

• Optimization can occur at a number of levels.  

 

• Typically the higher levels have greater impact, and are 
harder to change later on in a project, requiring significant 
changes or a complete rewrite if they need to be changed.  

 

• Thus optimization can typically proceed via refinement from 
higher to lower, with initial gains being larger and achieved 
with less work, and later gains being smaller and requiring 
more work. 

9 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Levels of optimization.. 

• Design level 

• At the highest level, the design may be optimized to make best 
use of the available resources, given goals, constraints, and 
expected use/load. 

• Algorithms and data structures 

• Given an overall design, a good choice of efficient algorithms and 
data structures, and efficient implementation of these 
algorithms and data structures comes next.  

• Source code level 

• Beyond general algorithms and their implementation on an 
abstract machine, concrete source code level choices can make a 
significant difference. 

 10 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Levels of optimization… 

• Build level 

• Between the source and compile level, directives and build flags can 
be used to tune performance options in the source code and 
compiler respectively. 

• Compile level 

• Use of an optimizing compiler tends to ensure that the executable 
program is optimized at least as much as the compiler can predict. 

• Assembly level 

• At the lowest level, writing code using an assembly language, 
designed for a particular hardware platform can produce the most 
efficient and compact code if the programmer takes advantage of the 
full repertoire of machine instructions. 

• Run time 

• Just-in-time compilers can produce customized machine code based 
on run-time data, at the cost of compilation overhead. 11 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Trade-offs 

• Optimization will generally focus on improving just one or two 
aspects of performance: execution time, memory usage, disk space, 
bandwidth, power consumption or some other resource.  

• This will usually require a trade-off — where one factor is optimized 
at the expense of others.  

• For example, increasing the size of cache improves runtime 
performance, but also increases the memory consumption. Other 
common trade-offs include code clarity and conciseness. 

 

• There are instances where the programmer performing the 
optimization must decide to make the software better for some 
operations but at the cost of making other operations less efficient. 

•  These trade-offs may sometimes be of a non-technical nature  12 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



When to optimize? 

• Optimization can reduce readability and add code that is used 
only to improve the performance.  

 

• This may complicate programs or systems, making them 
harder to maintain and debug.  

 

• As a result, optimization or performance tuning is often 
performed at the end of the development stage. 

13 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Bottlenecks 

• Optimization may include finding a bottleneck in a system – a 
component that is the limiting factor on performance.  

 

• In terms of code, this will often be a hot spot – a critical part 
of the code that is the primary consumer of the needed 
resource – though it can be another factor, such as I/O 
latency or network bandwidth. 

 

14 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



Pareto Principle 

• In computer science, resource consumption often follows a 
form of power law distribution, and the Pareto principle can be 
applied to resource optimization by observing that 80% of the 
resources are typically used by 20% of the operations. 

• In software engineering, it is often a better approximation that 
90% of the execution time of a computer program is spent 
executing 10% of the code (known as the 90/10 law in this 
context). 

15 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 

• Definition:  

• The Pareto principle (also known as the 80–20 
rule, the law of the vital few, and the principle 
of factor sparsity) states that, for many events, 
roughly 80% of the effects come from 20% of 
the causes. 



Pareto Principle 

• In Software: 

• In computer science and engineering control theory, such as for 
electromechanical energy converters, the Pareto principle can be 
applied to optimization efforts. 

 

• For example, Microsoft noted that by fixing the top 20% of the 
most-reported bugs, 80% of the related errors and crashes in a given 
system would be eliminated. 

 

• In load testing, it is common practice to estimate that 80% of the 
traffic occurs during 20% of the time. 

 

• In software engineering, Lowell Arthur expressed a corollary 
principle: "20 percent of the code has 80 percent of the errors. Find 
them, fix them!" 

16 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 



• For more details, refer to: 

• Program Optimization, wiki. 

• Context Switch Definition, Online tutorial, 
http://www.linfo.org/context_switch.html  

• Pareto Principle Basics, wiki. 

 

• The lecture is available online at: 

• http://bu.edu.eg/staff/ahmad.elbanna-courses/12134    

• For inquires, send to: 

• ahmad.elbanna@feng.bu.edu.eg 

17 

©
 A

hm
ad

 E
l-B

an
na

 
RT

ES
, L

ec
#1

0 
, S

pr
in

g 2
01

5 

http://www.linfo.org/context_switch.html
http://www.linfo.org/context_switch.html
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
mailto:ahmad.elbanna@feng.bu.edu.eg

